Alexander A. Stotsky

 σ

 σ

 σ

 σ

Automotive Engines Control, estimation, STATISTICAL DETECTION

Alexander A. Stotsky

Automotive Engines

Control, Estimation, Statistical Detection

โครงรักเร เวลา กรุว ยริมธ ลยหมัด เล่ หลัง โรยสร ที่มีฯ จหรักเร ราม รามป ตรุม 07-07 03670

Professor Dr. Alexander A. Stotsky Department of Computer Science and Engineering Aalborg University Niels Bohrs Vej 8 6700 Esbjerg Denmark astotsky@aaue.dk stotskya@mail.ru

ISBN 978-3-642-00163-5 e-ISBN 978-3-642-00164-2 DOI 10.1007/978-3-642-00164-2 Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009921493

© Springer-Verlag Berlin Heidelberg 2009

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Kirchner, Erich

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Increasing requirements for a fuel economy, exhaust emissions and the output performance and also the complexity of the automotive engines necessitate the development of a new generation of the engine control functionality. This book offers the solutions of a number of the engine control and estimation problems and consists of ten Chapters grouped in four Parts. Idle speed control and cylinder flow estimation techniques are presented in the first Part of the book; engine torque and friction estimation methods are presented in the second Part; engine misfire and Cam Profile Switching diagnostic methods are presented in the third Part; and engine knock detection and control algorithms are discussed in the fourth Part of the book. The algorithms presented in the first Part of the book use a mean value engine model and the techniques described in the rest of the book are based on the cylinder individual engine model. The book provides a sufficiently wide coverage of the engine functionality.

The book also offers a tool-kit of new techniques developed by the author which was used for the problems described above. The techniques can be listed as follows: input estimation, composite adaptation, spline and trigonometric interpolations, a look-up table adaptation and a threshold detection adaptation. These methods can successfully be used for other engine control and estimation applications. These methods are listed in Table 0.1 and Table 0.2 which contain a brief description of the methods, application areas and references providing a reader with the overview and a guidance through the book.

One of the key techniques used in this book is the statistical techniques. A periodic nature of the engine rotational dynamics and a cycle-to-cycle variability allows the presentation of the engine signals as statistical signals utilizing such statistical variables as mean values and standard deviations. The detection of the engine events such as misfire events, knock events and others can be associated with the statistical hypotheses. The statistical hypotheses can in turn be tested via decision making procedures, described in Table 0.3 for example. Two basic types of errors can be made in the statistical tests of the

. Cano

VI Preface		References
- 1 - 1 - 1 - 1 - 1 - 1	Purpose of Linmeasured Input of a Dy-	[5], [48], [49]
Technique	Estimation of Omneastant Output Measure-	[85],[95]
Input Estimation	namic System from the Output include	[99], [100]
	ments Decemeter Estimation Technique Driven	[96], [97],
Composite Adaptation	by both Tracking and Prediction Error	[100]
	with Improved Convergence Rate	1000
	A Balumomial Fitting of Measured Signal	[90], [93],
Desurvive Spline Interpola-	A Polynomial Squares Sense and Analytical	[102]
Recuisive open	in the Least-Squares with a High	
tion	Calculation of the Delivative	
	Accuracy. Contents of	[86]. [87]
trie Interpolation	Calculation of the Flequency Window	[88].[105]
Trigonometric interpetation	the Oscillating Signal in a Moving Window	[80] [00]
the the station	Adaptation of the Engine Look-up Tables	[[09],[90],
Look-Up Table Adaptation	with Meager New Data Representation	[107], [108]
	Front Misdetection Avoidance via Adap-	[91], [92]
Detection Threshold Adap-	Event Misuce Detection Threshold of the	
tation	tation of the Confidence Interval Method	
lauron	Signal Using a Confidence Inter the	

Table 0.1. Techniques

Technique	Described in Chap-	Application	Applied in Chap- ter
Input Estimation	ter 2.2.1	Idle speed control, Cylinder Flow Estimation	1, 2
Composite Adaptation Recursive Spline Interpola-	2.3.1 3	Cylinder Flow Estimation Engine Acceleration Estimation	2 3,4
Trigonometric Interpolation	4.3, 7.2	Torque Estimation, Misfire Diag- nostic, Knock Detection	4, 7, 9
Look-Up Table Adaptation	5.5, 6.3	Adaptation of the Engine Friction Look-Up Table	5,6
Detection Threshold Adap- tation	10.5	Adaptation of the Engine Knock Detection Threshold	10

Table 0.2. Application of Different Techniques

hypotheses called α -risk and β -risk specified by the engineer. The detection performance of the engine events such as misfire events, knock events and others can in turn be associated with these errors, for example with α -risk. The same detection performance (with the same α -risk) can be achieved if the parameters of the signal such as a mean value and a standard deviation involved in the detection of the engine events change due to aging of the engine components, for example. Many types of the engine event detection problems can be formulated as hypothesis-testing problems aiming to a robust detec-

tion providing the same detection performance for new and aged engines. A great potential for a robust engine control system design is in a combination of statistical hypotheses and a feedback principle. A control aim can also be associated with the statistical hypothesis and the feedback can be used for either rejection or not rejection of a null hypothesis. A tracking error which is driven to zero via a proper choice of a feedback loop could be presented as a difference between the value of the statistic associated with a hypothesis test and a desired value of the statistic. A desirable hypothesis achieved by a feedback when the tracking error converges to zero, in turn determines desired statistical properties of the closed loop system. For example, the rejection of a null hypothesis in favor of the alternative hypothesis achieved by the engine knock feedback described in Chapter 10 offers a desired statistical separation between a mean value of the maximum amplitude of the knock sensor signal at a given frequency and the threshold value. This in turn, allows the design of a robust engine knock control system with desired α -risk and probability of the knock occurrence.

These statistical methods are not only used widely in the book in Chapters 6-10, but also collected and described in Appendix as the most future prospective methods for a new generation of a robust engine functionality. The statistical methods are also listed in Table 0.3 providing references to the description of the method and application areas. This book is one of the first steps towards a statistical robustification of the engine control functionality.

The major part of the book is devoted to the real-time algorithms, and Chapter 9 is devoted to the statistical automatic calibration of the engine knock detection algorithm. Rising number of the engine calibration parameters and a time and cost associated with the engine calibration necessitate the development of a software for automatic calibration of the engine functionality. Automatic engine calibration is a rapidly growing area and Chapter 9 of the book shows an example for the statistical automatic calibration of the engine knock frequency.

Practising automotive engineers should find this book useful when they need the solutions of engine control and estimation problems described in this book, or when they are working on a new engine control or estimation problem and want to use the techniques described in this book. Black Belts working in automotive industry should also find the book useful due to the comprehensive collection of the statistical techniques and their applications to the automotive engines. Engine functionality forms the part of the Automotive Engineering Courses at Universities. This book should also be useful for lecturers, researchers and students since it provides a sufficiently wide coverage of the engine control and estimation problems, detailed descriptions of the techniques useful in automotive applications, and also describes future trends and challenges in the engine functionality.

The author is grateful to his colleagues from Chalmers University, Ford Motor Company and Volvo Car Corporation for interesting discussions. The

VIII Preface

Statistical Method	Described	Application	Applied
	in Chap-		in
	ter		Chapter
One Sample t-Test	14.1.1	Misfire Detection, Knock control	7,10
Two Sample t-Test	14.1.2	Knock detection	9
Test For Equal Variances	14.1.3	Look-up tables adaptation	6
Outlier Detection Test	14.1.6	Knock Control	10
Confidence Intervals as	14.1.6	Knock Control	10
Thresholds			
Markov Inequality	10.3.2	Knock Control	10
Random Number Gener-	10.2.1	Knock Modeling & Control	10
ators			

Table 0.3. Application of the Statistical Methods

statistical part of this work was carried out within the Volvo Six Sigma Programme.

Contents

Part I Idle Speed Control, Adaptive Flow Estimation and Spline Interpolation

1	Idl	e Speed Control with Estimation of Unmeasurable	
	Dis	sturbances	3
	1.1	Introduction	3
	1.2	Engine Model	4
	1.3	Problem Statement	8
	1.4	Control Design	8
		1.4.1 Observer Design for Disturbance Torque $T_d(t)$	8
		1.4.2 Control Law Design for a Spark Advance	9
		1.4.3 Control Law Design for Throttle	11
	1.5	Stability Analysis of the System	11
	1.6	Simulation Results	12
	1.7	Conclusion	13
2	Cyl	inder Flow Estimation	15
	2.1	Introduction	16
	2.2	Air Charge Determination Using Input Observer	19
		2.2.1 Input Estimation Algorithms: General Case	19
		2.2.2 Input Observer Application to Charge Estimation	23
		2.2.3 Experimental Evaluation	25
	2.3	Composite Adaptive Engine Air Charge Estimation	25
		2.3.1 Composite Adaptive Algorithms: General Case	27
		2.3.2 Derivation of Composite Adaptive Air Charge Estimator	34
		2.3.3 Improving Feedforward via Learning	38
		2.3.4 Evaluation	40
	2.4	Air Charge Prediction	42
	2.5	Concluding Remarks	43

3	Rec	cursive Spline Interpolation Method	45
	3.1	Introduction	10
	3.2	The Estimation of the Derivatives of Signation	46
		Interpolation	49
	3.3	Second Order Example	49
		3.3.1 Spline Interpolation Method	10
		3.3.2 Combination of High Gain Observer and Spine	51
		Interpolation Method and Their Comparative Analysis.	52
	3.4	Implementation Results: Crankshaft Acceleration Estimation .	50
	3.5	Conclusion	91

Part II Engine Torque and Friction Estimation

4	En	gine Torque Estimation	61
	4.1	Introduction	61
	4.2	Problem Statement	63
	4.3	Recursive Trigonometric Interpolation Method	64
		4.3.1 General Description	64
		4.3.2 Computationally Efficient Filtering Algorithms	67
	4.4	Filtering Technique Based on the Kaczmarz Projection Method	73
	4.5	Estimation of the Engine Torque via Crankshaft Speed	
		Fluctuations	78
	4.6	Conclusion	82
	-		OF
5	Eng	gine Friction Estimation at Start	80
	5.1	Introduction	80
	5.2	Impact on Drivability	81
	5.3	Problem Statement	81
	5.4	Estimation of the Friction Torque at Start	88
	5.5	Adaptation Algorithms for Look-up Tables	90
		5.5.1 Problem Statement	90
		5.5.2 General Adaptation Algorithms for Look-Up Tables	91
		5.5.3 Adaptation Algorithms of the Engine Friction Torque	
		Look-up Table	96
	5.6	Conclusions	97
6	Dat	a-Driven Algorithms for Engine Friction Estimation	00
	6.1	Introduction	99
	6.2	Estimation of Engine Losses During Fuel Cut Off State	101
		6.2.1 Problem Statement	101
		6.2.2 Filtering Technique	102
	6.3	Adaptation of the Friction Torque Look up Table	105
		6.3.1 Description of Adaptation Algorithm for Look up	100
		Tables	105
			100

Con	tents	XI
~ ~ ~ ~ ~	A	

	6.3.2	Adaptation	Algorithm	n for	Engine	Friction	Look-up	
		Table						109
6.4	Conch	usion						111

Part III Engine Misfire and Cam Profile Switching State Detection

7	Stat	tistical Engine Misfire Detection11	5
	7.1	Introduction	5
	7.2	Recursive Trigonometric Interpolation Algorithms	8
		7.2.1 Problem Statement	8
		7.2.2 Recursive Algorithms for Trigonometric Interpolation 11	9
		7.2.3 Correction of the Recursive Algorithms for Round-Off	
		Errors	1
	7.3	Filtering Technique Based on Trigonometric Interpolation	
		Method	3
	7.4	Statistical Misfire Detection Technique	3
		7.4.1 Misfire Detection at the Combustion Frequency12	3
		7.4.2 Misfire Detection at the Half-Order Frequency	0
	7.5	Conclusion	0
8	The	Cam Profile Switching State Detection Method 13	1
	8.1	Introduction	1
	8.2	The CPS State Detection Algorithm	2
	8.3	Conclusion	4

Part IV Engine Knock

9	Sta	tistical Engine Knock Detection
	9.1	Introduction
	9.2	Recursive Trigonometric Interpolation Algorithms
		9.2.1 Problem Statement
	9.3	Knock Detection Algorithms
		9.3.1 Step1: Knock Detection by Using the Cylinder
		Pressure Signal
		9.3.2 Step2: Knock Detection by Using the Knock Sensor
		Signal
	9.4	Conclusion
10	Stat	tistical Engine Knock Control
	10.1	Introduction
	10.2	Statistical Models of the Knock Sensor and Microphone
		Signals
		10.2.1 Generation of the Amplitude Signals

	10.2.2 Threshold Value Determination16310.2.3 Knock Sound Model16310.3 Engine Knock Control with Desired α -risk16410.3.1 Introduction16410.3.2 Control Aims16510.3.3 Trade-off Between the α -risk and Fuel Consumption16710.3.4 Control Algorithm16810.4 Simulation of the Closed Loop Knock Control System16910.5 Adaptation of the Threshold Value17010.6 Conclusion174
11	Appendix A
12	Appendix B
13	Appendix C
14	Appendix D19514.1 Hypotheses Tests19514.1.1 One Sample t-Test19614.1.2 Two Sample t-Tests19714.1.3 One Sample χ^2 -Test (Test on the Variance)20014.1.4 Test for Equal Variances (F-test)20114.1.5 A Statistical Transient Detection20214.1.6 Outlier Detection and Confidence Intervals as Thresholds20214.1.7 Change in Mean Test Based on Neyman-Pearson Lemma204
15	Appendix E
Refe	erences